|
|
|
|
|
Multiterminal Secrecy by Public Discussion
Author(s): Narayan Prakash;Himanshu Tyagi
Source: Journal:Foundations and Trends® in Communications and Information Theory ISSN Print:1567-2190, ISSN Online:1567-2328 Publisher:Now Publishers Volume 13 Number 2-3, Pages: 150(129-275) DOI: 10.1561/0100000072
Abstract:
This monograph describes principles of information theoretic secrecy
generation by legitimate parties with public discussion in the presence
of an eavesdropper. The parties are guaranteed secrecy in the form of
independence from the eavesdropper’s observation of the communication.
Part I develops basic technical tools for secrecy generation, many of
which are potentially of independent interest beyond secrecy settings.
Various information theoretic and cryptographic notions of secrecy are
compared. Emphasis is placed on central themes of interactive communication
and common randomness as well as on core methods of
balanced coloring and leftover hash for extracting secret uniform randomness.
Achievability and converse results are shown to emerge from
“single shot” incarnations that serve to explain essential structure.
Part II applies the methods of Part I to secrecy generation in two
settings: a multiterminal source model and a multiterminal channel
model, in both of which the legitimate parties are afforded privileged
access to correlated observations of which the eavesdropper has only
partial knowledge. Characterizations of secret key capacity bring out
inherent connections to the data compression concept of omniscience
and, for a specialized source model, to a combinatorial problem of maximal
spanning tree packing in a multigraph. Interactive common information
is seen to govern the minimum rate of communication needed to
achieve secret key capacity in the two-terminal source model. Furthermore,
necessary and sufficient conditions are analyzed for the secure
computation of a given function in the multiterminal source model.
Based largely on known recent results, this self-contained monograph
also includes new formulations with associated new proofs. Supplementing
each chapter in Part II are descriptions of several open
problems.
|
|
|
|