|
|
|
|
|
Functional Form and Heterogeneity in Models for Count Data
Author(s): William Greene
Source: Journal:Foundations and Trends® in Econometrics ISSN Print:1551-3076, ISSN Online:1551-3084 Publisher:Now Publishers Volume 1 Number 2,
Document Type: Article Pages: 106(113-218) DOI: 10.1561/0800000008
Abstract: This study presents several extensions of the most familiar models for count data, the Poisson and negative binomial models. We develop an encompassing model for two well-known variants of the negative binomial model (the NB1 and NB2 forms). We then analyze some alternative approaches to the standard log gamma model for introducing heterogeneity into the loglinear conditional means for these models. The lognormal model provides a versatile alternative specification that is more flexible (and more natural) than the log gamma form, and provides a platform for several "two part" extensions, including zero inflation, hurdle, and sample selection models. (We briefly present some alternative approaches to modeling heterogeneity.) We also resolve some features in Hausman, Hall and Griliches (1984, Economic models for count data with an application to the patents"–R&D relationship, Econometrica 52, 909"–938) widely used panel data treatments for the Poisson and negative binomial models that appear to conflict with more familiar models of fixed and random effects. Finally, we consider a bivariate Poisson model that is also based on the lognormal heterogeneity model. Two recent applications have used this model. We suggest that the correlation estimated in their model frameworks is an ambiguous measure of the correlation of the variables of interest, and may substantially overstate it. We conclude with a detailed application of the proposed methods using the data employed in one of the two aforementioned bivariate Poisson studies.
|
|
|
|